Nitrooxy alkyl apovincaminate activates K+ currents in rat neocortical neurons.
نویسندگان
چکیده
The effects of nitrooxy alkyl apovincaminate VA-045 ((+)-eburunamenine-14-carboxylic acid(2-nitroxy-ethyl ester), VA) were investigated in acutely dissociated rat neocortical neurons by using a nystatin-perforated patch recording configuration. VA activated a steady-state outward current in a concentration-dependent manner, with an EC50 of 0.65 microM. The reversal potential for the current shifted 56.5 mV with tenfold changes in the extracellular K+ concentration, suggesting that the current was carried by K+. The VA-induced current was not suppressed by apamin (1 microM), charybdotoxin (1 microM), Cs+ (3 mM), Ba2+ (3 mM), 4-aminopyridine (10 mM) or glibenclamide (10 microM), whereas tetraethylammonium suppressed the current with an IC50 of 1.4 mM. These pharmacological properties of the VA-induced current were compatible with a slowly inactivating delayed rectifier current (I(K)). It was suggested that the current activated by VA was I(K). The VA-induced current was not affected by Ca2+ depletion or by staurosporine (0.1 microM), quinacrine (10 microM), wortmanin (1 microM) or genistein (1 microM). The intracellular perfusion of GDPbetaS (0.4 mM) also had no significant effect. Thus, VA may directly activate the K+ channels.
منابع مشابه
Multiple actions of methohexital on hippocampal CA1 and cortical neurons of rat brain slices.
To explore the mechanism by which methohexital (MTH) activates epileptiform activity in patients with epilepsy, we examined the effects of MTH on hippocampal CA1 and neocortical neurons via extracellular and whole-cell patch-clamp recordings in rat brain slices. Perfusion of slices with 10 to 100 microM MTH caused no significant change in glutamatergic transmission in the hippocampal CA1 region...
متن کاملModulation of K+ channels by intracellular ATP in human neocortical neurons.
ATP-modulated K+ channels play an important role in regulating membrane excitability during metabolic stress. To characterize such K+ channels from the human brain, single channel currents were studied in excised inside-out patches from freshly dissociated human neocortical neurons. Three currents that were sensitive to physiological concentrations of ATP and selectively permeable to K+ were id...
متن کاملPotassium-coupled chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons.
Chloride (Cl(-)) homeostasis is critical for many cell functions including cell signaling and volume regulation. The action of GABA at GABA(A) receptors is primarily determined by the concentration of intracellular Cl(-). Developmental regulation of intracellular Cl(-) results in a depolarizing response to GABA in immature neocortical neurons and a hyperpolarizing or shunting response in mature...
متن کاملSodium channels in dendrites of rat cortical pyramidal neurons.
The voltage-dependent properties that have been directly demonstrated in Purkinje cell and hippocampal pyramidal cell dendrites play an important role in the integrative capacities of these neurons. By contrast, the properties of neocortical pyramidal cell dendritic membranes have been more difficult to assess. Active dendritic conductances near sites of synaptic input would have an important e...
متن کاملFunctional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
The cannabinoid receptor CB1 is found in abundance in brain neurons, whereas CB2 is essentially expressed outside the brain. In the neocortex, CB1 is observed predominantly on large cholecystokinin (CCK)-expressing interneurons. However, physiological evidence suggests that functional CB1 are present on other neocortical neuronal types. We investigated the expression of CB1 and CB2 in identifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Japanese journal of pharmacology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2001